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Accuracy of the semiclassical approximation for chaotic scattering
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The semiclassical approximation for scattering probabilities is tested for a simple chaotic system con-
sisting of a particle in one dimension scattering from a localized potential that varies periodically in
time. Good agremeent between semiclassical and exact quantum mechanical results is found even for

relatively large de Broglie wavelengths.
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Although the standard semiclassical approximation for
scattering probabilities [1,2] has been widely applied to
chaotic systems [3], the evidence for its validity is largely
indirect. In particular, it leads to successful predictions
for S-matrix correlation functions [4,5], and closely relat-
ed approximations can accurately propagate wave pack-
ets [6] and give the location scattering resonances [7].
The purpose of this paper is to present a more direct test
of the semiclassical approximation by comparing semi-
classical scattering probabilities for individual states with
exact quantum mechanical results.

As a model, we consider a particle in one dimension
scattering from a spatially localized, time varying poten-
tial. The Hamiltonian is

2 + o
H=%+V0e_"2 > 8(t—n), (1)

n=-—o0

where ¢ is the time and (x,p) are the position and momen-
tum coordinates. This corresponds to a particle receiving
periodically spaced ‘“kicks.” Models of this type show
many of the generic features of chaotic dynamics and
have been employed frequently [8-10]. One of their ad-
vantages is that their dynamical behavior, both classical
and quantum, can be found by iterating maps, which
greatly simplifies numerical calculations.

The scattering process governed by (1) is chaotic if
V5 <0 and the initial momentum is not too large. When
Vy is between 0 and about —6, the series that gives the
semiclassical scattering amplitude converges slowly and
is difficult to evaluate in practice. However, as V) is de-
creased the convergence improves considerably, and the
scattering amplitude may be calculated in a straightfor-
ward manner. Here we choose V,= —12; for this case,
the semiclassical series converges after roughly 100
terms. A detailed discussion of the convergence proper-
ties of the semiclassical approximation is given elsewhere
[11].

Our main conclusion is that the semiclassical approxi-
mation can be remarkably accurate even for relatively
large de Broglie wavelengths. The approximation does
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fail, as is well known, near classical singularities such as
caustics. This problem can presumably be remedied with
conventional techniques [2,12], but this is not attempted
here. Below we present our calculational methods fol-
lowed by our numerical results.

The classical probability that a particle, with an initial
momentum p, >0 and a randomly chosen initial position
X9 << —1, scatters to a final momentum between p and
p +dp, is given by D (p,p,)dp, where D (p,p,) is the
classical scattering distribution. The scattering distribu-
tion is most easily found by calculating a large number of
trajectories with initial positions distributed uniformly on
an interval X —p, <x, <X, where X << —1. Only a finite
range of initial positions is needed, since a trajectory be-
ginning at x, —p,, scatters to the same final momentum as
one beginning at x;, in the limit x,— — . The trajec-
tories are obtained by iterating the map

Xy +1=X, TPpt1 5
, (2)
pn+1=pn_V(xn) ’

which follows from the equations of motion derived from
(1), with V'(x) denoting the derivative of
V(x)=Vyexp(—x?) and (x,,p,) denoting the position
and momentum just prior to the time ¢t =n [8-10].

The classical scattering distribution also has the ex-
pression

—1

9p(xgisPo)
D r{X0j>Po ’ 3)

ax;

1
D,(p,po)=—23
Po 7

where the scattering function p,(x,,p,) gives the final
momentum as a function of the initial conditions and
{xo;} is the set of initial positions between X and X —p,
satisfying ps(xq;,p0)=p [9]. While (3) is not convenient
for direct computation, it shows that the classical scatter-
ing distribution is infinite whenever dp,/0x; vanishes
for at least one value of j. Such an infinity is referred to
as a rainbow singularity or a caustic.

The quantum scattering distribution D (p,p,) can be
found by propagating a state |1, ) with the quantum map

W,nH):e—iﬁz/zﬁe~ivtm/ﬁ|¢n) , @)

where (X,p) are the position and momentum operators
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[8,9]. In the position representation, (4) takes the form

(x|, ) =(2mit)~ 12> /24

i i
——xx'+——=x"

Xf_+°°dx'(x’|1/:,,>exp 5 7

)

—éV(x’)

Thus the state can be propagated by one unit of time by
doing a single Fourier transform. In order to obtain
D(p,py), the initial state |1,) is chosen to have an aver-
age momentum p, with a small uncertainty §p. D (p,p,)
is then simply the momentum distribution for |y, ) in the
limit of large n. More precisely, we take |1,) to be the
Gaussian wave packet

1/4
(xlgoy= | 2021
0 7Tﬁ2
ipox 2
Xexp Pﬁo —L%%)—(x—xo)z . (6)

In the limits that n— + o, x;— — », and &p —0, we
have
+ o . 2
Dp.po)=57 | [ Taxtxlwe L)

Because of quasienergy conservation, the quantum
scattering distribution consists of a sum of 8 functions lo-
cated at values of p satisfying p2/2=p3/2+2m#im, for
integer m [9,10]. In practice, the distribution obtained by
wave packet propagation has sharp peaks instead of &
functions, since the ideal limits are not realized. Hence
to obtain the probability P(p,p,) to scatter to an allowed
sate p, one integrates over the corresponding peak of
D (p,po)-

The standard semiclassical approximation for the
scattering probability is [1,2]

2rh
P(p,po)=~——I|T(p,po)|* . (8)
PsPo |p |p0 P,Po

Here T (p,p,) is the scattering amplitude given by

run= 3 | 2ol [

T dxo;
i imT
Xexp Tﬁ_Fj(P’po)_TVj(p,po) s 9)

where

(x07,P0) 12
. l[p, 0Pl

Fi(p,po)= ) I

‘f

t
— [ atlx (0p(+H )] } (10
0

with the integral being evaluated for the trajectory begin-

ning at (xg;,po). The Maslov index v; is obtained by

counting the number of times dp(#)/3dx,; changes sign,

20

Py
o
|
|

-20

-9 -5
X0

FIG. 1. The scattering function p/(x¢,p,) vs x, for p,=4.0
and V,=—12.0. p, varies erratically near points on the stable
manifold of a chaotic repeller.

along the trajectory, when V'’ (x(t)) is positive and sub-
tracting the number of times dp(¢)/0x,; changes sign
when V"' (x(t)) is negative [13].

The most difficult part of evaluating (9) is finding the
set of initial positions {x;}, which requires locating the
roots of ps(xq;,po)=p. When the scattering is chaotic,
this equation has an infinite number of solutions and (9) is
an infinite series. If the series converges sufficiently rapid-
ly (when its terms are ordered according to their absolute
magnitudes) then enough terms can be found by a
straightforward bisection algorithm to obtain a good ap-
proximation for the semiclassical amplitude; fortunately,
the largest terms are generally the easiest to find.

As is discussed in Ref. [11], one can relate the conver-
gence properties of the semiclassical series to the capacity
dimension d of the fractal set of points on which the
scattering function p,(xq,po) is singular (for fixed pg).
Near these singularities, which lie on the stable manifold
of a chaotic repeller, p, varies in a highly complicated
fashion, exhibiting the sensitive dependence on initial
conditions characteristic of chaos (see Fig. 1) [3]. If the
dynamics is hyperbolic, the terms in (9) decay algebrai-
cally, on average, with an exponent —1/2d. Making a
random phase assumption, one can then estimate the
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FIG. 2. The classical scattering distribution D(p,po) for
po=4.0 and V= —12.0, showing many rainbow singularities.
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FIG. 3. The scattering probability P(p,p,) vs p for p,=4.0,
Vo=—12.0, and #=0.5. The lines indicate exact quantum re-
sults, while the diamonds give the semiclassical approximation.

number of terms required to evaluate (9). To achieve 1%
accuracy, one finds that one needs roughly the 100%/(1 =9
largest terms.

This estimate applies only for V|, less than about —4,
since for greater values the dynamics may not be hyper-
bolic due to the presence of stability islands [10]. When
Vo < —4, numerical evidence suggests the dynamics is
hyperbolic, at least for practical purposes. In this paper,
we use V= —12, in which case d =0.49+0.01. Thus to
find a good approximation to (9), we require about the
100 biggest terms. In general, the convergence rate of the
semiclassical a series improves as V), is reduced.

The classical scattering distribution is shown in Fig. 2
for py=4. The sharp peaks are rainbow singularities; the
distribution is infinite at these points, although they ap-
pear finite in Fig. 2 due to numerical limitations. In Fig.
3, the corresponding quantum scattering probabilities for
#=0.5 are given as obtained from an exact quantum cal-
culation (lines) and from the semiclassical approximation
(8) (diamonds). The exact quantum results are for a wave
packet that initially has 8p /p,=0.004. The semiclassical
approximation is reasonably accurate, except for some
values of p that lie near rainbow singularities. These de-
fects should be correctable by using some type of uniform
approximation [2,12]. The overall good agreement be-
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FIG. 4. The scattering probability P(p,p,) vs # for p,=4.0,
Vo= —12.0, and p=—4.0. The solid line is the semiclassical
approximation and the X’s are exact quantum results.

tween the exact and semiclassical results is remarkable
considering that the initial de Broglie wavelength,
2mw#/py=0.79, is comparable to the width of the poten-
tial. A comparison of the exact and semiclassical elastic
backscattering probabilities is plotted in Fig. 4 as a func-
tion of #, again confirming the validity of Eq. (8).

These results support previous work [4-7] that indi-
cates that the semiclassical approximation works well
even for relatively large values of #i. When the semiclassi-
cal series converges rapidly, it can be used as a practical
computational method; the semiclassical results present-
ed in this paper required far less computational time than
their quantum counterparts. This is particularly true for
one-dimensional inelastic scattering (as considered here)
and two-dimensional elastic scattering, since in both
these cases the required root search is on a one-
dimensional manifold. A physical application of the
method would be to the calculation conductances for
two-dimensional microstructures [5]. In cases where the
semiclassical series converges slowly, some refinement of
the series appears needed to make it a useful computa-
tional tool.
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